Significado de Creating and testing the SRM sample illustrated in Figure 5.50 is essentially a three step process: creating the particle assembly that represents the intact rock in PFC3D; generating and importing the discrete fracture network (DFN) that represents the structural pattern of the rock mass into the particle assembly; and testing. Intermediate stages in preparing the sample involve using the DFN to estimate the average size of the rock bridges that will be modelled and calibrating the microproperties of the synthetic material (e.g. particle size distribution and packing, particle and bond stiffness, particle friction coefficients and bond strengths) to the measured properties of the physical material (e.g. Young’s Modulus, UCS). When testing, a minimum of four tests, one tensile, en español, que significa la palabra Creating and testing the SRM sample illustrated in Figure 5.50 is essentially a three step process: creating the particle assembly that represents the intact rock in PFC3D; generating and importing the discrete fracture network (DFN) that represents the structural pattern of the rock mass into the particle assembly; and testing. Intermediate stages in preparing the sample involve using the DFN to estimate the average size of the rock bridges that will be modelled and calibrating the microproperties of the synthetic material (e.g. particle size distribution and packing, particle and bond stiffness, particle friction coefficients and bond strengths) to the measured properties of the physical material (e.g. Young’s Modulus, UCS). When testing, a minimum of four tests, one tensile, en ingles, cual es el significado de Creating and testing the SRM sample illustrated in Figure 5.50 is essentially a three step process: creating the particle assembly that represents the intact rock in PFC3D; generating and importing the discrete fracture network (DFN) that represents the structural pattern of the rock mass into the particle assembly; and testing. Intermediate stages in preparing the sample involve using the DFN to estimate the average size of the rock bridges that will be modelled and calibrating the microproperties of the synthetic material (e.g. particle size distribution and packing, particle and bond stiffness, particle friction coefficients and bond strengths) to the measured properties of the physical material (e.g. Young’s Modulus, UCS). When testing, a minimum of four tests, one tensile,.
Creating and testing the SRM sample illustrated in Figure 5.50 is essentially a three step process: creating the particle assembly that represents the intact rock in PFC3D; generating and importing the discrete fracture network (DFN) that represents the structural pattern of the rock mass into the particle assembly; and testing. Intermediate stages in preparing the sample involve using the DFN to estimate the average size of the rock bridges that will be modelled and calibrating the microproperties of the synthetic material (e.g. particle size distribution and packing, particle and bond stiffness, particle friction coefficients and bond strengths) to the measured properties of the physical material (e.g. Young’s Modulus, UCS). When testing, a minimum of four tests, one tensile, Español
Creating and testing the SRM sample illustrated in Figure 5.50 is essentially a three step process: creating the particle assembly that represents the intact rock in PFC3D; generating and importing the discrete fracture network (DFN) that represents the structural pattern of the rock mass into the particle assembly; and testing. Intermediate stages in preparing the sample involve using the DFN to estimate the average size of the rock bridges that will be modelled and calibrating the microproperties of the synthetic material (e.g. particle size distribution and packing, particle and bond stiffness, particle friction coefficients and bond strengths) to the measured properties of the physical material (e.g. Young’s Modulus, UCS). When testing, a minimum of four tests, one tensile, Español
No hay comentarios:
Publicar un comentario